Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
function4(iszero, 0, dummy, dummy2) -> true
function4(iszero, s1(x), dummy, dummy2) -> false
function4(p, 0, dummy, dummy2) -> 0
function4(p, s1(0), dummy, dummy2) -> 0
function4(p, s1(s1(x)), dummy, dummy2) -> s1(function4(p, s1(x), x, x))
function4(plus, dummy, x, y) -> function4(if, function4(iszero, x, x, x), x, y)
function4(if, true, x, y) -> y
function4(if, false, x, y) -> function4(plus, function4(third, x, y, y), function4(p, x, x, y), s1(y))
function4(third, x, y, z) -> z
Q is empty.
↳ QTRS
↳ Non-Overlap Check
Q restricted rewrite system:
The TRS R consists of the following rules:
function4(iszero, 0, dummy, dummy2) -> true
function4(iszero, s1(x), dummy, dummy2) -> false
function4(p, 0, dummy, dummy2) -> 0
function4(p, s1(0), dummy, dummy2) -> 0
function4(p, s1(s1(x)), dummy, dummy2) -> s1(function4(p, s1(x), x, x))
function4(plus, dummy, x, y) -> function4(if, function4(iszero, x, x, x), x, y)
function4(if, true, x, y) -> y
function4(if, false, x, y) -> function4(plus, function4(third, x, y, y), function4(p, x, x, y), s1(y))
function4(third, x, y, z) -> z
Q is empty.
The TRS is non-overlapping. Hence, we can switch to innermost.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
function4(iszero, 0, dummy, dummy2) -> true
function4(iszero, s1(x), dummy, dummy2) -> false
function4(p, 0, dummy, dummy2) -> 0
function4(p, s1(0), dummy, dummy2) -> 0
function4(p, s1(s1(x)), dummy, dummy2) -> s1(function4(p, s1(x), x, x))
function4(plus, dummy, x, y) -> function4(if, function4(iszero, x, x, x), x, y)
function4(if, true, x, y) -> y
function4(if, false, x, y) -> function4(plus, function4(third, x, y, y), function4(p, x, x, y), s1(y))
function4(third, x, y, z) -> z
The set Q consists of the following terms:
function4(iszero, 0, x0, x1)
function4(iszero, s1(x0), x1, x2)
function4(p, 0, x0, x1)
function4(p, s1(0), x0, x1)
function4(p, s1(s1(x0)), x1, x2)
function4(plus, x0, x1, x2)
function4(if, true, x0, x1)
function4(if, false, x0, x1)
function4(third, x0, x1, x2)
Q DP problem:
The TRS P consists of the following rules:
FUNCTION4(plus, dummy, x, y) -> FUNCTION4(if, function4(iszero, x, x, x), x, y)
FUNCTION4(if, false, x, y) -> FUNCTION4(plus, function4(third, x, y, y), function4(p, x, x, y), s1(y))
FUNCTION4(plus, dummy, x, y) -> FUNCTION4(iszero, x, x, x)
FUNCTION4(if, false, x, y) -> FUNCTION4(p, x, x, y)
FUNCTION4(p, s1(s1(x)), dummy, dummy2) -> FUNCTION4(p, s1(x), x, x)
FUNCTION4(if, false, x, y) -> FUNCTION4(third, x, y, y)
The TRS R consists of the following rules:
function4(iszero, 0, dummy, dummy2) -> true
function4(iszero, s1(x), dummy, dummy2) -> false
function4(p, 0, dummy, dummy2) -> 0
function4(p, s1(0), dummy, dummy2) -> 0
function4(p, s1(s1(x)), dummy, dummy2) -> s1(function4(p, s1(x), x, x))
function4(plus, dummy, x, y) -> function4(if, function4(iszero, x, x, x), x, y)
function4(if, true, x, y) -> y
function4(if, false, x, y) -> function4(plus, function4(third, x, y, y), function4(p, x, x, y), s1(y))
function4(third, x, y, z) -> z
The set Q consists of the following terms:
function4(iszero, 0, x0, x1)
function4(iszero, s1(x0), x1, x2)
function4(p, 0, x0, x1)
function4(p, s1(0), x0, x1)
function4(p, s1(s1(x0)), x1, x2)
function4(plus, x0, x1, x2)
function4(if, true, x0, x1)
function4(if, false, x0, x1)
function4(third, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
FUNCTION4(plus, dummy, x, y) -> FUNCTION4(if, function4(iszero, x, x, x), x, y)
FUNCTION4(if, false, x, y) -> FUNCTION4(plus, function4(third, x, y, y), function4(p, x, x, y), s1(y))
FUNCTION4(plus, dummy, x, y) -> FUNCTION4(iszero, x, x, x)
FUNCTION4(if, false, x, y) -> FUNCTION4(p, x, x, y)
FUNCTION4(p, s1(s1(x)), dummy, dummy2) -> FUNCTION4(p, s1(x), x, x)
FUNCTION4(if, false, x, y) -> FUNCTION4(third, x, y, y)
The TRS R consists of the following rules:
function4(iszero, 0, dummy, dummy2) -> true
function4(iszero, s1(x), dummy, dummy2) -> false
function4(p, 0, dummy, dummy2) -> 0
function4(p, s1(0), dummy, dummy2) -> 0
function4(p, s1(s1(x)), dummy, dummy2) -> s1(function4(p, s1(x), x, x))
function4(plus, dummy, x, y) -> function4(if, function4(iszero, x, x, x), x, y)
function4(if, true, x, y) -> y
function4(if, false, x, y) -> function4(plus, function4(third, x, y, y), function4(p, x, x, y), s1(y))
function4(third, x, y, z) -> z
The set Q consists of the following terms:
function4(iszero, 0, x0, x1)
function4(iszero, s1(x0), x1, x2)
function4(p, 0, x0, x1)
function4(p, s1(0), x0, x1)
function4(p, s1(s1(x0)), x1, x2)
function4(plus, x0, x1, x2)
function4(if, true, x0, x1)
function4(if, false, x0, x1)
function4(third, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 2 SCCs with 3 less nodes.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
FUNCTION4(p, s1(s1(x)), dummy, dummy2) -> FUNCTION4(p, s1(x), x, x)
The TRS R consists of the following rules:
function4(iszero, 0, dummy, dummy2) -> true
function4(iszero, s1(x), dummy, dummy2) -> false
function4(p, 0, dummy, dummy2) -> 0
function4(p, s1(0), dummy, dummy2) -> 0
function4(p, s1(s1(x)), dummy, dummy2) -> s1(function4(p, s1(x), x, x))
function4(plus, dummy, x, y) -> function4(if, function4(iszero, x, x, x), x, y)
function4(if, true, x, y) -> y
function4(if, false, x, y) -> function4(plus, function4(third, x, y, y), function4(p, x, x, y), s1(y))
function4(third, x, y, z) -> z
The set Q consists of the following terms:
function4(iszero, 0, x0, x1)
function4(iszero, s1(x0), x1, x2)
function4(p, 0, x0, x1)
function4(p, s1(0), x0, x1)
function4(p, s1(s1(x0)), x1, x2)
function4(plus, x0, x1, x2)
function4(if, true, x0, x1)
function4(if, false, x0, x1)
function4(third, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
FUNCTION4(p, s1(s1(x)), dummy, dummy2) -> FUNCTION4(p, s1(x), x, x)
Used argument filtering: FUNCTION4(x1, x2, x3, x4) = x2
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
function4(iszero, 0, dummy, dummy2) -> true
function4(iszero, s1(x), dummy, dummy2) -> false
function4(p, 0, dummy, dummy2) -> 0
function4(p, s1(0), dummy, dummy2) -> 0
function4(p, s1(s1(x)), dummy, dummy2) -> s1(function4(p, s1(x), x, x))
function4(plus, dummy, x, y) -> function4(if, function4(iszero, x, x, x), x, y)
function4(if, true, x, y) -> y
function4(if, false, x, y) -> function4(plus, function4(third, x, y, y), function4(p, x, x, y), s1(y))
function4(third, x, y, z) -> z
The set Q consists of the following terms:
function4(iszero, 0, x0, x1)
function4(iszero, s1(x0), x1, x2)
function4(p, 0, x0, x1)
function4(p, s1(0), x0, x1)
function4(p, s1(s1(x0)), x1, x2)
function4(plus, x0, x1, x2)
function4(if, true, x0, x1)
function4(if, false, x0, x1)
function4(third, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
FUNCTION4(plus, dummy, x, y) -> FUNCTION4(if, function4(iszero, x, x, x), x, y)
FUNCTION4(if, false, x, y) -> FUNCTION4(plus, function4(third, x, y, y), function4(p, x, x, y), s1(y))
The TRS R consists of the following rules:
function4(iszero, 0, dummy, dummy2) -> true
function4(iszero, s1(x), dummy, dummy2) -> false
function4(p, 0, dummy, dummy2) -> 0
function4(p, s1(0), dummy, dummy2) -> 0
function4(p, s1(s1(x)), dummy, dummy2) -> s1(function4(p, s1(x), x, x))
function4(plus, dummy, x, y) -> function4(if, function4(iszero, x, x, x), x, y)
function4(if, true, x, y) -> y
function4(if, false, x, y) -> function4(plus, function4(third, x, y, y), function4(p, x, x, y), s1(y))
function4(third, x, y, z) -> z
The set Q consists of the following terms:
function4(iszero, 0, x0, x1)
function4(iszero, s1(x0), x1, x2)
function4(p, 0, x0, x1)
function4(p, s1(0), x0, x1)
function4(p, s1(s1(x0)), x1, x2)
function4(plus, x0, x1, x2)
function4(if, true, x0, x1)
function4(if, false, x0, x1)
function4(third, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.